Reverse Path Exploration for Failure Detection

Thomas Huining Feng (tfeng@eecs.berkeley.edu)

Abstract

Automatic program testing by means of path explo-
ration has been a successful technique for discovering
potential failures. However, the cost of a complete test
is usually high, while an incomplete test yields false neg-
atives. Algorithms exist trade preciseness for efficiency,
resulting in a spectrum of conservatism. Orthogonal to
these, effort has been made to avoid exploring “unnec-
essary” paths, such as multiple paths that fall in the
same equivalent class of program behavior.

In this project, a new analysis method is studied that
aims to reduce the number of paths without introducing
extra conservatism. Unlike many existing program anal-
ysis methods, this one tries to explore execution paths
in the reverse direction by first focusing on the failure
statements, and then the statements (or the conditional
tests) above them. This helps to promptly detect fail-
ing paths in a lengthy program. There are more appli-
cations for this approach, including testing for concur-
rent programs and incrementally building up tests from
small summaries.

1 Motivation

Traditional program testing methods analyze state-
ments of a programs in their sequential order. Each
execution path is explored from the start of the program
to either the end or a failing statement, which indicates
a potential bug that can be reached at run-time. This
general approach does not scale for large programs, due
to the exponential number of paths that exist in the pro-
grams. Many algorithms end up exploring every path
even though only few of them can actually lead to a fail-
ure. Different conservative strategies have been studied
to improve time efficiency, resulting in either extra false
positive (detecting failing paths that cannot actually
be taken), or extra false negative (missing failing paths
that could actually be taken).

An alternative to this is reverse program analysis,
which analyzes the programs in their reverse order. This
method is based on the observation that failure state-
ments and normal return statements are almost always
at the end of a program. If we can first locate those
points of interest and focus only on the paths that can

lead to failure, then we may be able to avoid exploring
paths that are proved safe.

2 Example

Take program testme.c as an introductory example to
the reverse analysis. (Function fail takes a condition
and, if it evaluates to true, halts the program with a
failure.)

/* testme.c */
#include <stdio.h>
#include <cute.h>
int dbl(int x) {
return 2 * x;

}
void £(){
int x; int y;
int z = dbl(x);
if (z ==y) { // IF#1
if (x 1= y+10) { // IF#2
if (x == 0) { // IF#3
printf("fine\n");
} else { // ELSE#3
printf("also fine\n");
}
} else { // ELSE#2
y =0
fail(y == 0);
}
}
}

In this program, function f is under test. Unlike the
concolic test generation approach which starts executing
f from the beginning with a random input, we start
with the fail statement, and generate the first program
segment under test (testme_segl.c):

/* testme_segl.c */
#include <stdio.h>
#include <cute.h>

void £() {
int y;
y =0;
fail(y == 0);
}


mailto:tfeng@eecs.berkeley.edu

When we perform concolic analysis on this segment,
we detect that the failing condition is “true”. We then
extend this segment with the nearest conditional test
and all the unconditional statements above that test.
The result is in testme_seg2.c.

/* testme_seg2.c */
#include <stdio.h>
#include <cute.h>
void £ {
int x; int y;
if (x != y+10) {
if (x == 0) {
printf ("fine\n");
} else {
printf("also fine\n");
}
} else {
fail(true);
}

We again perform concolic analysis on this segment,
considering x and y as concolic variables. Assume that
we arbitrarily let x=0 and y=0. The program terminates
at the “fine” branch. We then analyze the path taken
in a top-down fashion up to “(x != y+10)”, because
negating this branch takes us to the fail statement.
In the summary of this analysis, the failing condition is
“(x == y+10) && true”.

testme_seg3.c further extends the above segment
with one more conditional branch and the statements
above it:

/* testme_seg3.c */
#include <stdio.h>
#include <cute.h>

void £() {
int x; int y;
int z = 2 * x;
if (z ==y) {

fail((x == y+10) && true);
}

Again we consider x and y as concolic variables and
perform concolic testing. This test either takes the true
branch of “(z == y)” or the false branch. In both cases,
we analyze the path up to the branch condition, and
summarize the failing condition as “(2*x == y) && (x
== y+10) && true”.

We now reach the head of program testme.c. The
failing condition is satisfiable (with assignment x=-10
and y=-20), so we know that the original program may
fail under some inputs.

3 Assessment

This method aims to avoid exploring unnecessary paths
(those that guarantee not to fail) by gradually expand-
ing the backward search from the failing point. Multiple
failing points can be handled in a reverse breadth-first
search manner.

In testme.c, we avoided examining the path
IF#1->IF#2->ELSE#3. If we used concolic testing,
starting with input x=0 and y=0, we would have first
explored the path IF#1->IF#2->IF#3, and then back-
tracked to IF#1->IF#2->ELSE#3 using a constraint
solver. This is a redundant test since we already know
(with a simple static analyzer) that this path never fails.
In practice, in the IF#2 block there could be much more
code that does not fail. Our method avoids testing it.

The performance of our method can be further
improved by partial execution. For example, in
testme_seg?2.c, there was no need to fully execute the
program. It could be stopped once we took the “then”
branch of condition “(x != y+10)”. With this im-
provement, one can see that in this example, the amount
of work required by this method is roughly equal to ex-
amining one full path. E|

The summaries of program segments (i.e., the condi-
tions in the fail function calls) can be reused in mul-
tiple analysis. This can be extremely helpful for the
testing of concurrent programs, where different inter-
leavings of the threads need to be analyzed. When we
examine a sequential interleaving, if the failing condi-
tion is satisfied at some point, then we can immediately
return the result, and there is no need to analyze further
down the execution.

Another interesting application is separate testing.
When a component (e.g., some related functions) is
developed, it can be checked without considering the
overall system. The failing condition is extracted and
recorded as an annotation in the component’s “inter-
face.” The programmer then proceeds to develop other
parts of the system. At composition time, a test is
performed. It uses the annotations to check whether
a component’s failing condition is satisfied, and notifies
the programmer if so. Changes can be made and test
can be re-done. The annotations help to avoid testing
the non-failing components over and over again.

n testme_segl.c, we tested the fail statement; in
testme_seg2.c, we tested ELSE#2, and the execution stopped right
at the branch; in testme_seg3.c we tested IF#1. The total amount
of work is roughly equal to examining path IF#1->ELSE#2->fail
in full.



	Motivation
	Example
	Assessment

