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Distributed Discrete-Event Execution Strategy
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« Execution strategy decides whether/when it is safe to process
an input event.

« Conventional: Compute can process top event e, if e, has a
greater time stamp.

* Null message (null, t,)
Cons: overhead, sensitive to faults, lack of real-time property
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Overview of Our Approach

« Leverage time-synchronized platforms
 Eliminate null messages

 Potentially improves concurrency

« Decompose assertions of real-time properties
* Recover software components from faults
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Reference Application: Distributed Cameras

* n cameras located around a football field, all connected to a
central computer.

« Events at blue ports satisfy t <=t
(t — time stamp of any event; 7 — real time)

« Events at red ports satisfy t > 7
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Reference Application: Distributed Cameras

Problems to solve:
— Make event-processing decisions locally
— Guarantee timely command delivery to the Devices
— Guarantee real-time update at the Display
— Tolerate images loss or corruption at Image Processor
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Minimum Model-Time Delay ¢

0.P XxP — R*U {oo} returns the minimum model-time delay
between any two ports.

(P — set of ports; R* — set of non-negative reals.)
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Example: 6(Is, 0,) = min{o:+dy, 0+, +0,}, Where J,, ..., 0g €
R* are pre-defined.
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Intuition of Execution Strategy

-

When is it safe to process e = (v, t) at I,?
1. future events at i, i, and i, have time stamps > t (conventional), or
2. future events at i, and i, have time stamps > t, or

3. future events at i, have time stamps > t, and
future events at i, depend on events at i, with time stamps >t — J,, Or

4. future events at i1, and I, depend on events at i and i, with time stamps
>t —min{ds, dg, I5 + J,, g + I, }.
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Relevant Dependency
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| ~ 1" Iff they are input of the same actor and affect a common
output. An equivalence class is a transitive closure of ~.
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Construct a collapsed graph, and compute relevant dependency
between equivalence classes.

d(e', ) = ming., 1o, £0G7", D}
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Dependency Cut

min{ds + d,', dg + J,'}

A dependency cut for ¢ Is a minimal but complete set of
equivalence classes that needs to be considered to process an
event at ¢.

Example: C, and C, are both dependency cuts for &;.
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Execution Strategy

min{ds + d,', dg + J,'}

Determine top event e = (v, t) at ¢, safe to process
 If we choose C,: future events at ¢; have time stamps > t.

 If we choose C,: for any ¢ € C,, future events at in ¢, depend
on events at ¢ with time stamps >t — d(e, ).

 In general, we can freely choose any dependency cut.
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Implementation of the Execution Strategy
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« n+ 1 platforms with synchronized clocks (IEEE 1588).
« Choose dependency cuts at platform boundary.

« A queue stores events local to the platform.

 Atreal time 7, future events have time stamps >7—d..
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Tolerating Loss of Images
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start start connection lost

« Start the composition as soon as the starting packets are

received.
_ Image
—:| Processor

 Create a checkpoint at the beginning (small constant overhead)
« Backtrack when fault is detected (linear in memory locations)
* In most cases, discard the checkpoint (garbage collection)
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A Program Transformation Approach

Before Transformation After Transformation
int s; int s;
void f (int 1) { void f(int 1) {
s = 1i; SASSIGNSs (1) ;
} }

An assignment is transformed into a function call to
record the old value:

private final int $ASSIGNSs (int newValue) ({
if (SCHECKPOINT != null && S$CHECKPOINT.getTimestamp() > 0) {
SRECORDS$s.add (null, s, SCHECKPOINT.getTimestamp())
}

return s = newValue;

}

This incurs a constant overhead.
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A Program Transformation Approach

Before Transformation

After Transformation

int s;
void f(int 1) {
s = 1i;

}

int s;
void f(int i) {

}

SASSIGNSs (i),

Image img;
int partNum;
void consume (Packet pl,
if (img == null) {
img = new Image();
partNum = 0O;
}
img.parts[partNum] =
p2) ;
partNum++;

}

Packet p2)

compose (pl,

Observation:

The overhead for each basic operation is

constant.
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Image img;
int partNum;

void consume (Packet pl,

}

if (img == null) {

SASSIGNSimg (new Image());

SASSIGNSpartNum(0) ;

}

img.$ASSIGNSparts (partNum,
compose (pl, p2));

SASSIGNSSPECIALSpartNum (11,

"

O: +=
1: —-=
11: ++
12: --
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Conclusion and Future Work

« Advantages

Eliminate null messages

Decompose real-time schedulability analysis
Advance the system even when some platforms fail
Tolerate faults without sacrificing real-time properties

o Future Work
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Examine different choices of dependency cuts

Develop static WCET (worst-case execution time) analysis to guarantee
real-time properties on each platform

Build an implementation to support a variety of real applications
Exploit parallelism with multi-core platforms
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