The 14t |EEE Real-Time and Embedded Technology and Applications Symposium, April 2008 @lless

Real-Time Distributed Discrete-Event
Execution with Fault Tolerance

Thomas Huining Feng and Edward A. Lee

Center for Hybrid and Embedded Software Systems
EECS, UC Berkeley

{tfeng, eal}@eecs.berkeley.edu

Distributed Discrete-Event Execution Strategy

4 A
A 4 C\
Sensor
vy €= (v, 1) i
Com uteH’" Actuator
S ‘Z:t :
ource
_ Y, \ y
ey €5 = (Vy, 1)
B}
Sensor } J

« Execution strategy decides whether/when it is safe to process
an input event.

« Conventional: Compute can process top event e, if e, has a
greater time stamp.

* Null message (null, t,)
Cons: overhead, sensitive to faults, lack of real-time property

RTAS 2008 Feng & Lee, CHESS, EECS, UC Berkeley

Overview of Our Approach

« Leverage time-synchronized platforms
 Eliminate null messages

 Potentially improves concurrency

« Decompose assertions of real-time properties
* Recover software components from faults

-

-

Sensor

i Compute H Actuator

RTAS 2008 Feng & Lee, CHESS, EECS, UC Berkeley

Reference Application: Distributed Cameras

* n cameras located around a football field, all connected to a
central computer.

« Events at blue ports satisfy t <=t
(t — time stamp of any event; 7 — real time)

« Events at red ports satisfy t > 7

n copies

s
|—+ Delay H Route i_ _i Merge H Queue +_$DGV106$

| Image (D) -
Commanl . 5 ‘.’ Display

RTAS 2008 Feng & Lee, CHESS, EECS, UC Berkeley

Reference Application: Distributed Cameras

Problems to solve:
— Make event-processing decisions locally
— Guarantee timely command delivery to the Devices
— Guarantee real-time update at the Display
— Tolerate images loss or corruption at Image Processor

n copies

|—+ Delay H Route i_ _i Merge H Queue H Device +‘

? Image .
Command . 5 Display

RTAS 2008 Feng & Lee, CHESS, EECS, UC Berkeley

Minimum Model-Time Delay ¢

0.P XxP — R*U {oo} returns the minimum model-time delay
between any two ports.

(P — set of ports; R* — set of non-negative reals.)

———— 05 il

-
-
-
-

Example: 6(Is, 0,) = min{o:+dy, 0+, +0,}, Where J,, ..., 0g €
R* are pre-defined.

RTAS 2008 Feng & Lee, CHESS, EECS, UC Berkeley

Intuition of Execution Strategy

-

When is it safe to process e = (v, t) at I,?
1. future events at i, i, and i, have time stamps > t (conventional), or
2. future events at i, and i, have time stamps > t, or

3. future events at i, have time stamps > t, and
future events at i, depend on events at i, with time stamps >t — J,, Or

4. future events at i1, and I, depend on events at i and i, with time stamps
>t —min{ds, dg, I5 + J,, g + I, }.

RTAS 2008 Feng & Lee, CHESS, EECS, UC Berkeley

Relevant Dependency

I -

| ~ 1" Iff they are input of the same actor and affect a common
output. An equivalence class is a transitive closure of ~.
& mMin{ds, ¢, O + 6,4, I + 5} €1

Lingy
6

min{ds + ', d + 0.’}

Construct a collapsed graph, and compute relevant dependency
between equivalence classes.

d(e',) = ming., 1o, £0G7", D}

RTAS 2008 Feng & Lee, CHESS, EECS, UC Berkeley

Dependency Cut

min{ds + d,', dg + J,'}

A dependency cut for ¢ Is a minimal but complete set of
equivalence classes that needs to be considered to process an
event at ¢.

Example: C, and C, are both dependency cuts for &;.

RTAS 2008 Feng & Lee, CHESS, EECS, UC Berkeley

Execution Strategy

min{ds + d,', dg + J,'}

Determine top event e = (v, t) at ¢, safe to process
 If we choose C,: future events at ¢; have time stamps > t.

 If we choose C,: for any ¢ € C,, future events at in ¢, depend
on events at ¢ with time stamps >t — d(e,).

 In general, we can freely choose any dependency cut.

RTAS 2008 Feng & Lee, CHESS, EECS, UC Berkeley

10

Implementation of the Execution Strategy

1 copies

Queue

Display

..

« n+ 1 platforms with synchronized clocks (IEEE 1588).
« Choose dependency cuts at platform boundary.

« A queue stores events local to the platform.

 Atreal time 7, future events have time stamps >7—d..

RTAS 2008 Feng & Lee, CHESS, EECS, UC Berkeley 11

Tolerating Loss of Images

camear 1 1 1T T T T T 7 T 19
cmeaz 11 1T T 7 111

start start connection lost

« Start the composition as soon as the starting packets are

received.
_ Image
—:| Processor

 Create a checkpoint at the beginning (small constant overhead)
« Backtrack when fault is detected (linear in memory locations)
* In most cases, discard the checkpoint (garbage collection)

RTAS 2008 Feng & Lee, CHESS, EECS, UC Berkeley 12

A Program Transformation Approach

Before Transformation After Transformation
int s; int s;
void f (int 1) { void f(int 1) {
s = 1i; SASSIGNSs (1) ;
} }

An assignment is transformed into a function call to
record the old value:

private final int $ASSIGNSs (int newValue) ({
if (SCHECKPOINT != null && S$CHECKPOINT.getTimestamp() > 0) {
SRECORDS$s.add (null, s, SCHECKPOINT.getTimestamp())
}

return s = newValue;

}

This incurs a constant overhead.

RTAS 2008 Feng & Lee, CHESS, EECS, UC Berkeley 13

A Program Transformation Approach

Before Transformation

After Transformation

int s;
void f(int 1) {
s = 1i;

}

int s;
void f(int i) {

}

SASSIGNSs (i),

Image img;
int partNum;
void consume (Packet pl,
if (img == null) {
img = new Image();
partNum = 0O;
}
img.parts[partNum] =
p2) ;
partNum++;

}

Packet p2)

compose (pl,

Observation:

The overhead for each basic operation is

constant.

RTAS 2008

{

Image img;
int partNum;

void consume (Packet pl,

}

if (img == null) {

SASSIGNSimg (new Image());

SASSIGNSpartNum(0) ;

}

img.$ASSIGNSparts (partNum,
compose (pl, p2));

SASSIGNSSPECIALSpartNum (11,

"

O: +=
1: —-=
11: ++
12: --

Feng & Lee, CHESS, EECS, UC Berkeley

Packet p2)

-1);

\

Value,
not used
for ++.

{

14

Conclusion and Future Work

« Advantages

Eliminate null messages

Decompose real-time schedulability analysis
Advance the system even when some platforms fail
Tolerate faults without sacrificing real-time properties

o Future Work

RTAS 2008

Examine different choices of dependency cuts

Develop static WCET (worst-case execution time) analysis to guarantee
real-time properties on each platform

Build an implementation to support a variety of real applications
Exploit parallelism with multi-core platforms

Feng & Lee, CHESS, EECS, UC Berkeley

15

